Non-Commutative Formulas and Frege Lower Bounds: a New Characterization of Propositional Proofs
نویسندگان
چکیده
Does every Boolean tautology have a short propositional-calculus proof? Here, a propositionalcalculus (i.e. Frege) proof is any proof starting from a set of axioms and deriving new Boolean formulas using a fixed set of sound derivation rules. Establishing any super-polynomial size lower bound on Frege proofs (in terms of the size of the formula proved) is a major open problem in proof complexity, and among a handful of fundamental hardness questions in complexity theory by and large. Non-commutative arithmetic formulas, on the other hand, constitute a quite weak computational model, for which exponential-size lower bounds were shown already back in 1991 by Nisan [20], using a particularly transparent argument. In this work we show that Frege lower bounds in fact follow from corresponding size lower bounds on non-commutative formulas computing certain polynomials (and that such lower bounds on non-commutative formulas must exist, unless NP=coNP). More precisely, we demonstrate a natural association between tautologies T to non-commutative polynomials p, such that: if T has a polynomial-size Frege proof then p has a polynomial-size non-commutative arithmetic formula; and conversely, when T is a DNF, if p has a polynomial-size non-commutative arithmetic formula over GF (2) then T has a Frege proof of quasi-polynomial size. The argument is a characterization of Frege proofs as non-commutative formulas: we show that the Frege system is (quasi-) polynomially equivalent to a non-commutative Ideal Proof System (IPS), following the recent work of Grochow and Pitassi [10] that introduced a propositional proof system in which proofs are arithmetic circuits, and the work in [35] that considered adding the commutator as an axiom in algebraic propositional proof systems. This gives a characterization of propositional Frege proofs in terms of (non-commutative) arithmetic formulas that is tighter than (the formula version of IPS) in Grochow and Pitassi [10], in the following sense: (i) The non-commutative IPS is polynomial-time checkable – whereas the original IPS was checkable in probabilistic polynomial-time; and (ii) Frege proofs unconditionally quasi-polynomially simulate the non-commutative IPS – whereas Frege was shown to efficiently simulate IPS only assuming that the decidability of PIT for (commutative) arithmetic formulas by polynomial-size circuits is efficiently provable in Frege. 1998 ACM Subject Classification F.2.2 [Analysis of Algorithms and Problem Complexity] Nonnumerical Algorithms and Problems – Complexity of proof procedures
منابع مشابه
Characterizing Propositional Proofs as Non-Commutative Formulas
Does every Boolean tautology have a short propositional-calculus proof? Here, a propositional-calculus (i.e., Frege) proof is any proof starting from a set of axioms and deriving new Boolean formulas using a fixed set of sound derivation rules. Establishing any superpolynomial size lower bound on Frege proofs (in terms of the size of the formula proved) is a major open problem in proof complexi...
متن کاملGenerating Matrix Identities and Proof Complexity
Motivated by the fundamental lower bounds questions in proof complexity, we initiate the study of matrix identities as hard instances for strong proof systems. A matrix identity of d × d matrices over a field F, is a non-commutative polynomial f(x1, . . . , xn) over F such that f vanishes on every d × d matrix assignment to its variables. We focus on arithmetic proofs, which are proofs of polyn...
متن کاملAlgebraic Proofs over Noncommutative Formulas
We study possible formulations of algebraic propositional proof systems operating with noncommutative formulas. We observe that a simple formulation gives rise to systems at least as strong as Frege, yielding a semantic way to define a Cook-Reckhow (i.e., polynomially verifiable) algebraic analog of Frege proofs, different from that given in Buss et al. (1997) and Grigoriev & Hirsch (2003). We ...
متن کاملProof complexity of intuitionistic implicational formulas
We study implicational formulas in the context of proof complexity of intuitionistic propositional logic (IPC). On the one hand, we give an efficient transformation of tautologies to implicational tautologies that preserves the lengths of intuitionistic extended Frege (EF ) or substitution Frege (SF ) proofs up to a polynomial. On the other hand, EF proofs in the implicational fragment of IPC p...
متن کاملPropositional Consistency Proofs
Partial consistency statements can be expressed as polynomial-size propositional formulas. Frege proof systems have polynomial-size partial self-consistency proofs. Frege proof systems have polynomialsize proofs of partial consistency of extended Frege proof systems if and only if Frege proof systems polynomially simulate extended Frege proof systems. We give a new proof of Reckhow’s theorem th...
متن کامل